pic
Description¶
This module contains all the functions used to quantify and analyze MU persistent inward currents.
Currently includes delta F.
compute_deltaf(emgfile, smoothfits, average_method='test_unit_average', normalisation='False', recruitment_difference_cutoff=1.0, corr_cutoff=0.7, controlunitmodulation_cutoff=0.5, clean=True)
¶
Quantify delta F via paired motor unit analysis.
Conducts a paired motor unit analysis, quantifying delta F between the supplied collection of motor units. Origional framework for deltaF provided in Gorassini et. al., 2002: https://journals.physiology.org/doi/full/10.1152/jn.00024.2001
Author: James (Drew) Beauchamp
PARAMETER | DESCRIPTION |
---|---|
emgfile
|
The dictionary containing the emgfile.
TYPE:
|
smoothfits
|
Smoothed discharge rate estimates. Each array: motor unit discharge rate x samples aligned in time; instances of non-firing = NaN Your choice of smoothing. See compute_svr gen_svr for example.
TYPE:
|
average_method
|
The method for test MU deltaF value. More to be added.
TYPE:
|
normalisation
|
The method for deltaF nomalization.
TYPE:
|
recruitment_difference_cutoff
|
An exlusion criteria corresponding to the necessary difference between control and test MU recruitement in seconds.
TYPE:
|
corr_cutoff
|
An exclusion criteria corresponding to the correlation between control and test unit discharge rate.
TYPE:
|
controlunitmodulation_cutoff
|
An exclusion criteria corresponding to the necessary modulation of control unit discharge rate during test unit firing in Hz.
TYPE:
|
clean
|
To remove values that do not meet exclusion criteria
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
delta_f
|
A pd.DataFrame containing deltaF values and corresponding MU number. The resulting df will be different depending on average_method. In particular, if average_method="all", delta_f[MU][row] will contain a tuple representing the indices of the two motor units for each given pair (reporter, test) and their corresponding deltaF value.
TYPE:
|
See also
- compute_svr : fit MU discharge rates with Support Vector Regression, nonlinear regression.
Examples:
Quantify delta F using svr fits.
>>> import openhdemg.library as emg
>>> emgfile = emg.emg_from_samplefile()
>>> emgfile = emg.sort_mus(emgfile=emgfile)
>>> svrfits = emg.compute_svr(emgfile)
>>> delta_f = emg.compute_deltaf(
... emgfile=emgfile, smoothfits=svrfits["gensvr"],
... )
delta_f
MU dF
0 0 NaN
1 1 NaN
2 2 NaN
3 3 1.838382
4 4 2.709522
For all possible combinations, not test unit average, MU in this case is pairs (reporter, test).